CALCULATION OF THE DISCHARGE
OF UNDERGROUND EXPLOSION GASES
INTO THE ATMOSPHERE
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Nonstationary gas filtration from the cavity of a camouflaged underground explosion through a
disaggregated porous medium is calculated. The computations were carried out for a spherically
symmetric gas experiencing two-dimensional motion. A two-term law of filtration was used.

The space—time pressure distribution of the gas within the medium was obtained. Motion hodo-
graphs of the "front" of filtration and the interface between the explosion products and air were
constructed. The influence of the soil filtration characteristics and pressure in the cavity was
investigated. The time at which gas is discharged into the atmosphere is determined based on
well-known data on the permeability of certain types of rocks that have undergone the effects of
an explosion. The variation of gas flow with time as a function of explosion depth is established.

Underground camouflaged explosions are characterized by an insignificant rise in the free soil surface.
Nevertheless, in the overwhelming majority of such exposions the soil mass is in the disaggregated state right
up to the crestal plane as a result of the effect of compression and dilation waves and also due to preferred
upwards displacement. A process in which explosion gases appear in the many cracks and pores of the sur-
rounding mass and their subsequent extrusion into the atmosphere therefore occurs at the final stage of camou-
flaged explosions due to the effect of excess pressure in the cavity. Concepts from filtration theory [1-3] can
be used to describe such gas motion. A similar mechanism for the discharge of explosion gases is typical for
sufficiently sturdy rock, inwhichthe cavity either does not cave in or does cave in at a sufficiently later point
in time.

A theoretically distinct mechanism for the discharge of gases into the atmosphere due to continuous cav-
ing in of the cavity up to the crestal plane is possible in loose ground. Some results of measurement of the
time at which gas is discharged into the atmosphere according to this mechanism have been set forth in [4] in
the case of an ideally free-flowing medium. A combination of both gas-discharge mechanisms is possible un-
der actual conditions of carrying out underground explosions, depending on the scale of the explosion and the
geological structure of the massif.

In the current work, the problem will be formulated in the following way. A cavity offinite radius ry with
cavity gas pressure p; exists in a disaggregated permeable medium at the initial moment of time. QGas filters
from the cavity under the effect of pressure. The pores and cracks of the medium are filled with air at an ini-
tial pressure pg. We have assumed in solving the problem that: 1} the disaggregated medium has ceased mov-
ing; 2) medium porosity in the course of gas motion remains invariant; 3) gas motion through the disaggre-
gated medium is descibed by a filtration equation that contains linear and quadratic terms; 4) gas—medium
heat exchange is not taken into account; and 5) cavity gas and air in the pores are assumed to have identical
constant viscosity.

We note that the results of a solution of this problem can also be useful in studying the process by which
the stressed state of a solid medium breaks down and varies due to gas from an explosion penetratingthe cracks.

The nonsteady motion of a filtering gas is described in the one-dimensional case using Euler variables
by the mass preservation law
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and a two-term Darcy law
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where p is pressure, p is density, y is gas viscosity, q is filtration rate, m is porosity, k and k; are the
permeabilities in laminar and turbulent flow of the filtering gas, and v is the dimension of the problem (y =
1 in two-dimensional and y=3 in spherically symmetric gas motion).

The equation of state of the filtering gas is taken in the form
p=Apn. (3)

We assume that the mass formed as the gas explodes remains invariant during the filtration process,
and that the condition on the cavity boundary is described by the equation

op,
ac = -—(peq) = l ,

where pe =Bpc is the equation of state of the gas in the cavity and 8 and V are cavity surface and volume,
respectively.

It is natural to specify the pressure distribution at the initial moment of time in the form
i )= [P et~ @
Py when r >,

We eliminate p and q from Egs. (1)-(3), obtaining a single nonlinear second-order partial differential
equation in p,
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with the boundary condition at r=r
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Equations (5) and (6) imply that the solution has the form
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We introduce the dimensionless parameters
Akephtt
H = p/py; Hy= py/p,; o = —I-J«ZT"_o—;
SromA kpyt
6= VBpnlm—n’ T= ml“‘];'() x = T/ro,
so that Eq. (7) is written in the form

H={(H,; n; ny; @; B; z; 7). (8)

As a result, Eq. (5} in dimensionless form convenient for programming takes the form
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H{1, 00=1; H(z, 0)=H, when 1=0, {11)
and we require that all the functions be bounded as x— <.

Thus, the problem has reduced to the solution of Eq. (9) under the boundary and initial conditions
(10) and (11).

1t is convenient to introduce the new function
(LH (%, T))™ whenz = 1,
Z(z, 1) = i\H(x, )" whenz > 1.

and pass to the finite-difference analog of the problem (9)-(11). We may write, using the Crank— Nicholson
six-point method [5] with uniform grid and pitches h in coordinate x and A 7 in coordinate 7, the equations

26, 7+ 2 ) _ Ar{ L
HeTrn T EGD - VReIDea T n L0+ LI+

220, O ZE 1, T+ O+ T 2O+ L i+

{
— 26—, O + (U D) g 57 G+ 1 ) —22(0)

, ) —1)h . ) , Y
0= N+ e 26 ) — 20— 1, i 12)
ot )= V14 g 26+ 1, N~ 26— 1,
20,7 +1) 20, ) 2pAt

HO7+D HO, )~ Y+ DO, 70

X 2, 14D =20, 7+ D1+ (= V) e s T

50, 1)=J1 +mi—°‘—1-)hiza,j)_—2(o, iR

Since the number of computation points is bounded, linear extrapolation to infinity is used at the right com~-
putation boundary,

2, N—20, 0k (13)

Z(N — 2, j) — 22N — 1, H+Z(H, )=0. (14)

The system of equations (12)-(14) consists of (N+1) equations with (N+1) unknowns, where N is the
number of computation points in a single time stratum. The parameter Yy may take values from zero to one,
v=0 resulting in an explicit four-point scheme, and v =1, an implicit scheme. Practical computations have
demonstrated that the best (from the point of view of computation accuracy and stability) is ¥ ~0.55.

Equations (12)-(14) can be rewritten in the form

ali ~ 102G —1, 7+ 1) —bDZG, j+1) + @412+ 1, j41)
=""f(L! ])’ a(—1)=C(N+1)=0,l=O,..,; N' (15)

The system (15) was solved using the factorization method [5]. In the course of the solution we first
set H(i, j+1=h(, j), ¢, j+1)=¢{(i, j), and the values of H(i, j¥1) and ¢ (i, j*+1) were refined in {erms of
the resulting values of Z(i, j+ 1) until the error in Z was lessthan 0.001%. Actual experience demonstrated
that two to three iterations were sufficient.

It is evident from Eqgs. (12) and (13) that the discontinuity in the initial conditions {(11) is eliminated
by "spreading” by one step, i.e., taking H(0, 0)=1 and H(h, 0)=H,,

The program provides for the calculation of the dimensionless gas flow and the position of the inter-
face between the cavity and interstitial gases I(r). Computation precision is controlied by checking the
mass balance over the entire space of compuation points.

The distinctive feature of the program is that the boundary of the computation region is variable, This
was done on the basis of the analogy of our problem to heat-conductivity problems. It is well known that a
linear heat-conductivity equation with initial conditions of the type of (4) and infinite right boundary has the
solution of a propagating "thermal wave." Though the thermal wave instantaneously propagates to infinity,
in practice a region may be indicated in which the temperature is identical to the initial temperature. Such
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Fig. 3

types of solutions were expected in our problem. The calculation was therefore initially conducted over a
small segment from the cavity boundary.

The computational region was doubled when the last computational value differed from the initial value
by a magnitude onthe orderof 0.001%. Accuracy is thus increased to the required limit at the initial mo-
ment of time and it becomes possible to carry out the computation to any distance from the cavity.

Calculations were carried out in the study of the gas-pressure distribution and gas-filtration-rate
distribution within a2 permeable medium within a wide range of variation of the dimensionless parameters:
Hy varied from 107 % to 1071, @ from 1072-102, 8 from 0.03 to 0.81; y=1 and 3; n=n,;=1 (isothermal pro-
cess).

Figures 1a and b depict the pressure distribution with respect to coordinate and time, respectively,
in one form of the calculation: » =3, Hy= 1072, @=1, and $=0.03. Dimensionless moments of time (Fig. 1a)
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TABLE 1
m, %
1 3 |9 7
pi. kglem
10 971 6,71 47 33
100 20,50 1491 3| 7.2

and coordinate x (Fig. 1b) are indicated on the curve by digits. The time at which the filtering gas arrives
at different distances from the cavity, given these values of the dimensionless parameters v, Hy, o, and §
in the case of complete mixing of the cavity and interstitial gases in the disturbed region, was determined
based on the computed gas-pressure distribution in the medium H=f(x, 7).

Since pressure at every point in space increases smoothly with time (Fig. 1b) and the moment at
which it becomes difficult for pressure to increase was determined, the point at which the straight line,
drawn correspondingly through the derivative maximum on the segment along which pressure increases,
to the initial level of the interstitial pressure was plotted after the filtration "front™ had arrived at a given
distance.
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Calculations were carried out for the arrival times of the cavity gas at different distances from the
cavity in the simplest case when the cavity and interstitial gases did not mix. In this case the arrival time
of the cavity gas to a fixed distance is characterized by the motion of the interface, which can be found from
the equations

1 1
M0=f4ﬂ:rzpdrwhenv= 3; M,,:j.nrgpdr whenvy =1,
1 1

where M, is the mass of gas that has left the cavity, 1 is the interface coordinate, and 7ry is the filtration
channel area.

Thus the methods that have been used in this study to determine the arrival times of a filtering gas
at a given distance yield, correspondingly, upper and lower bounds of this highly important characteristic
of nonstationary filtration conditions.

Let us consider the influence of the dimensionless parameters on the gas-filtration process and de-
termine the greatest actual values of ¢ and f§ as the explosion products move through a disaggregated me-
dium. The parameter o determines the nature of flow of the filtering gas. When o =0, flow is always lam-
inar. In fact, if we pass in Eq. (8) to the limit ¢ =0 and substitute the value of H in Egs. (9) and (10), we
obtain a problem corresponding to the Darcy law in the form

op . ¥ (16)

~ar =4

in place of Eq. (2). Therefore, we may use dependences obtained on the basis of Eq. (16) only when o «1
and it is necessary to use the two-term law (1) in separate cases.

This conclusion confirms, in particular, results of calculations oftheposition of the filtration front
hodograph for values of o between 1072 and 10%, which are depicted in Fig. 2 (spherically symmetric gas
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motion at a cavity pressure of 102 kg/cm2 and medium porosity 1%) in one variant of the calculation when
v=3, Hg= 1072, and B 0=0.03. Itisevident. that o does not strongly affect the motion of the filtration front
in the range 0 < @ <1 and begins to substantially change the position of the front hodograph only when o >1.

We will use published data on the measurement of the permeability of rock that has been disaggre-
gated by an explosion [6-8] in order to establish the greatest actual value of o. The zone of increased per-
meability is situated from 6-10 cavity radii from the explosion center depending on the type of rock and
the natural state of the massif and also on explosion energy. Permeability in the zone of strong shattering
varies from 1071-1 D and from 1072-10"! D in the fracture zone. Such a range of variation of perméability
leads to « being less than 1. In view of this fact and since the position of the filtration front hodograph in
x and 7 coordinates weakly depends on « when o <1, we assumed o=1 iu the subsequent calculations.

It was also assumed that cavity cave in and the formation of a cave~-in funnel occurs within time t
significantly exceeding the characteristic filtration time, L.e., t>mp rg} /pik. Therefore, the permeability
of highly friable rock in a cave-in funnel, amounting to about 10-10° D, was not taken into account in this
case.

The parameter f is directly proportional to medium porosity m and corresponds chiefly to the rate
of pressure drop in the cavity. When f=0, pressure in the cavity is constant. The influence of 8 on the
nature of the variation of pressure in the cavity is depicted in Fig. 3 for » =3, a=1, and Hy= 107%, The
dependence of cavity pressure on time determined for a 6.5-kg nuclear explosion at a depth of 240 m in al-
luvium with a density of 1.9 g/cm? and moisture of 129% [9] is depicted by the broken curve. The free por-
osity is about 139 for an alluvium porosity of 25-30% and moisture of 12%, which corresponds to g ~0.45.
The broken line is situated between the curves for 8=0.27 and $=0.81 for low 7, though the measured pres~
sure subsequently decreases more strongly than the computed pressure. This difference is explained by
the obvious fact that thermal processes in the calculation were not taken into account.

Figures 4a and b depict the influence of porosity m on arrival time of the filtration front (unbroken
curves) when y=3 and when the interface moves (broken curves) for v =3 and v=1. In all cases, o=1 and
Hy=1072, The value of m is indicated in percent on the curves.

The influence of gas pressure in the cavity on the speed of the filtration front (unbroken curves) is
illustrated by Figs. 5a and b for » =3 and p=1, respectively. The broken curves depict the position of the
interface. Values of Hy are indicated on the curves. In all the cases, =1 and m=0.01. The interface
moves less rapidly in the case of equal cavity pressure when p =3 than when p =1.

The calculated dependence of filtration-front arrival time on distance in the absence of cavity cave in
in the case a=1, p; =10% kg/cm?, and m=0.01 can be described by interpolation formulas in the spherically
symmetric case (v =3, $=0.03) 1 =0.1122 x3-22 where 3.0 < x <10, while in the two-dimensional case (v =1,
B=0.0075)

T=0.692 z1.9, 2.0 < = £ 10.

Gas flow through a fixed surface in the case v =1, =1, $=0.0075, and Hy=10"2 when 7 > 0.3 can be
represented in the range 2 < x< 10 in the form

0= 0;-32531 — M7 12— 0.06 exp (0.11357)8, = > 0.06 ¢*1155;
T :

Q= 9;0.42. £ < 0,06 exp (0.11357).

The calculation demonstrated that there exists a limiting distance L, = Wy, /r¢ to which the interface
between the explosion products and air propagates in the absence of mixing, depending on the porosity of
the medium and gas mass in the cavity. This distance can be expressed in terms of m and cavity pressure
Hy,

Wo U H,(1—m) |13
T —{"“—H;m—“‘ when v =3;
W L. —
W L H (1 0'75mnwhen ve—=1.
ro 3H,m

Table 1 presents values of the limiting distances Ly, when v =3 for a number of values of m and p,.
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The time at which the cavity gas is discharged into the atmosphere is in practice the most important
characteristic of an underground explosion. Since in carrying out the calculations we have assumed that
the medium was infinite, the moment of arrival of the filtration front or of the interface to a hypothetical
free surface situated at a required distance W from the point of explosion was taken as the time at which
the gas is discharged into the atmosphere.

The time tg at which the filtration front discharged into the atmosphere and the time t, at which the
interface is likewise discharged are presented in Table 2 for a number of rocks characterized by differing
degrees of fracturing, porosity, and permeability k and k¢ for a typical depth of the camouflaged explosion
W between 61y and 7rg. Times in the case of a spherically symmetric (¥ =3) motion can be found in the
group of rows indicated by A (Table 2) and times in the case of two-dimensional (¢ =1) motion when p;=
100 kg/cm? and distance to the free surface W=7ry are given in the group of rows indicated by B. The C
group of rows contains arrival times when y =3, p;=16 kg/cm?, and W= 6r,.

Values of the turbulent permeability coefficient k, are taken from an empirical dependence between
k and ki (Fig. 6) constructed using previous [2] data. The value of u was taken equal to 2 -10"* p, which
corresponds to the viscosity of carbon dioxide at a temperature of about 40°C and pressure of about 60 kg/
cm?. The scale of the explosion is determined by the cavity radius ry. It is clear from Table 2 that the
time at which the explosion products are discharged into the atmosphere substantially depends on the fil-
tration characteristics of the disaggregated medium and the explosion scale. Thus, discharge time strongly
decreases as medium porosity andpermeability increase. The influence of explosion scale ondischarge time
is particularly great. A 200-4009, increase in the linear explosion scale increases the discharge time of
the cavity gas by more than 500-10009%,.

We note that the disaggregation region is usually prolate upwards in a camouflaged explosion due to
the presence of break-away disaggregations and the freedom with which the medium shifts towards the
crestal plane. It therefore seems that the initially organized spherically symmetric gas motion assumes
the nature of two-dimensional motion at the last stage. We may therefore suppose that the actual times
at which the gas is discharged into the atmosphere will have intermediate values between that calculated
for y =3 and v =1. Moreover, a cave-in column will form in great explosions when the cavity roof is insuf-
ficiently stable over time t< mprg® /pik and the data in Table 2 may turn out to be overstated.

The inertial terms p(du/8t) and pu(du/d r) were eliminated from the motion equation in solving the
problem. An estimate oftheinertial terms after the calculations were carried out, shows that they are quite
negligible, since they are two to three orders of magnitude less than the remaining terms of the motion
equation.

These results of the calculations can be improved if we begin to consider thermal processes, take
into account the dependence of porosity on distance from the explosion point and gas viscosity on tempera-
ture, and also refine the pressure of the explosion gases in the cavity as a function of the type of explosion
source, soil characteristics, and explosion scale.
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